® Gatsby

Gatsby Brings Speed and
Simplicity to @
Mediacurrent.com ok s

December 10th, 2019

St Software Engineer for Mediacurrent, Bass player.

Back in 2016 we were planni
by the decoupled approach which was gaining popularity in the Drupal community. We liked
the idea of breaking apart the front-end and back-end so that we could have more flexibility
in how we executed redesigns (i. redesigns would not be tied to the Drupal upgrade

lifecycle). Tagged vith case-studies drupal View 2l Tags ®

g the latest Mediacurrent.com site redesign and were intrigued

Follow Mark Casias on Twitter

We started this journey with Jekyll, but quickly switched to Gatsby. We're excited to have
found the organizational agility we were looking for and now believe that Gatsby is a superior
solution that can work for many organizations lool
front-end for their website.

g to leverage a fast, secure React-based

Finding a Front End Framework

While we were investigating the best decoupled approach for Mediacurrent.com, our team
researched various options including Nodes frameworks like Expressjs. We ran into a
common problem — the level of complexity required to integrate the various framework
systems. We asked ourselves, “Was all of this necessary for a pretty typical corporate site?”

Take One: A Static Site Build With Drupal and Jekyll

Along the way, we reviewed static generators that could solve some of the complexity
problems and we liked the performance and security benefits Jekyll offered. At the time of our
review, we expected to see more Jekyll/Drupal integrations in the wild than we found. Drupal
could simply publish content as markdown files that Jekyll could then consume. We did
several POC's and liked the overall approach. At first, Jekyll looked great, but it wasn't long
before Jekyll turned into “Mr. Hyde.”

For small blogging sites where content structure is simple and doesn't require a myriad of 3rd
party integrations, Jekyll shines. But when used as a static front-end for our Drupal 8 website,
it soon became apparent that Jekyll wasn't the best fit. We typically make daily content
updates through our Drupal CMS which required Jekyll's markdown files to constantly be
updated with new content via source control. This added to the operational load of
maintaining the site because there were often Git merge conflicts that had to be resolved.

Why Gatsby

Luckily, our team had been researching and testing Gatsby as a potential solution for our
site's front-end woes. We realized Gatsby was an ideal fit for our front-end due to its ability to
compile quickly and its component display flexibility. Other features of Gatsby that appealed
to us included:

« A robust plugin system that easily integrates with Drupal and other systems

« React and GraphQL-based

« Highly optimized for performance

Gatsby's workflow allowed us to make front-end
design changes more quickly compared to working with a CSS-based templating system or
Jekyll's markdown files.

Migrating to Gatsby

To replace Jekyll, we embarked on migrating our site’s front-end to Gatsby. We scoped the
effort required which included converting Jekyll markdown files to Gatsby React components.
The conversion process took less time than we estimated due to Gatsby's clean, well-thought

it The back-end CMS i lion was minimal — enable and configure Drupal's
JSON:API module. We had 7 content types on our site whose content would publish to
Gatsby. Within each content type, we previously implemented Drupal’s Paragraphs module to
allow structured content to be published to different devices. We found that in order to
properly publish Paragraphs-based content, we needed to integrate it with GraphQL
fragments.

During the migration project, we ran into a series of unknowns that we hadn't considered
before starting development:

Build times

© The amount of content and assets were more than a usual Gatsby build. This caused
our builds to time out in Netlify, our host.

o To resolve this, we started using a Jenkins build process which does the build, then
pushes the build to Netlify. Since caching is still available on Jenkins, the build times
have improved.

o More recently, we are working on leveraging Gatsby Preview which allows us to see
changes immediately on a preview site as well as the Gatsby Builds feature which cuts
down our build times dramatically.

« Image processing

o Processing images was one of the build processes that increased the build time.
Consequently, many published images caused the build to take longer than expected.
We worked on reducing and unpublishing older content and redirecting it to new, fresh

content.

Body field processing.

o Images in the body field are not part of the regular processing and Drupal will render
relative paths. Since these paths are not part of Gatsby, we needed to add logic that
updates an image’s path to point to our Drupal instance URL.

o While we can access the images through the entity id, there was a second problem
where the file would not transliterate the names and add the %20 HTML character
code where spaces are expected. At this time we are working on a patch for the
gatsby-source-drupal, which changes the name of the file to replace %2e with a dash
to make it more browser friendly. This will be contributed back to the community. In
the meantime, we are redirecting any images inside a body field to our publishing
system.

We found short codes for files from our Drupal 7 instance that were processed in the Jekyll

build process.

© We band-aided this fix
information correctly.

our Jekyll module. We had to go back and re-publish this

* Audio file information.

© This was patched through our Jekyll module, but we added a JSON:API field enhancer
which added the necessary data to show audio files.

External JS calls. (Acquia Lift, Pardot)

o Since Gatsby is ultimately a React application, the way to insert tracking cookies, and
other 3rd Party scripts required workarounds. Fortunately, the gatsby-ssr API made this
easy. We used the onRenderBody lifecycle to confirm which environment we were on,
and inserted the required script tags accordingly.

Final Thoughts

Ultimately, the decision to convert Mediacurrent.com to a Gatsby front-end was a wise move.
Considering the issues we inherited by using a static-site generator that wasn't intentionally
built as a CMS front-end, Gatsby has been a welcome improvement. The benefits we're
experiencing with Gatsby are:

No wait time to apply Drupal module updates. The Gatsby front-end and Drupal back-end
are completely decoupled.

« Simplified decoupled architecture with no middle-men.

Front-end design updates can be deployed without concern for impact on back-end logic.

Gatsby Preview allows us to view content updates in real-time prior to publishing to
production.

Build times are now much improved using Gatsby's new Build feature (in beta). We are
seeing builds come in at 4-8 minutes on average compared to Jekyll which took up to 15
minutes to compile. We also know that incremental builds are coming soon and will
provide substantial improvements.

