How ALEF Bookstores Scaled
For 34,000+ Products

CUSTOMER STORIES WRITTEN BY MARINA PAPE

Galal Aly from Robustastudio explains how WooCommerce enabled ALEF Bookstores,

one of Egypt’s fastest growing bookstores, to scale in order to solve tracking challenges
and take their blooming business to even greater heights.

ALEF Bookstores had embraced eCommerce for expansion but faced problems with
scalability that threatened to slow them down. They needed to be able to track the many
thousands of books within their inventory — whether available in their main warehouse or
at branches — but due to many of the books having the same identifiers, they were

often untraceable.

= e IGH/REBETE BBTs F conmcT us [T

l;;mﬁk tluEEHEEJFNH 'E{ 0ms 0% EMPVCART

$
} ALEF sookstores
ARABIC BODKS ENGLISH & FOREIGH LANGUAGES KIDS BODK ACCESSDRIES STATIDNERY EDUTAINMENT GIFTS ABDUT ALEF
S U - —

STAY TUSED FOR DUR MOBILE APF @O o

° ‘w‘fhm

gt
)
._L:!

ety

i
iy
i

’

)
w
o
i
L
.
g
_§
.

k t

=
n
i
)
L
s,
|

Some background

ALEF Bookstores were using an ERP system, hosting over 34,000 products, built on top of
the famous Opentaps (an open source ERP system). The main requirement was to use the
ERP system as the single interface for entering products and the commerce website

therefore had to synchronize both data.

The synchronization model at first was designed to synchronize all data four times a day
so that the products’ data appear the same on the website as on the system. The ERP was
configured to export all of the updated product’s data since last export in an XML file.

Initially, this contained all products.

WordPress and WooCommerce

The website was created using WordPress and WooCommerce. The synchronization
part was initially created as a WordPress plugin that parses the XML and uses the

WordPress functions to insert the product and update its data; wp_insert post and

update post meta. Products inserted had categories, tags, prices, descriptions, photos,

weights and dimensions, and other custom attributes like Author of the book and so on.

For WooCommerce functionality, we used the get product function to be able to apply
product’s functions on the inserted product (e.qg. setting stock). The synchronization plugin

was written at first to handle all 34,000+ products which took 18 hours at first.

Improving duration and solving memory problems

This duration was reduced to one third by turning off the term counting. This was done

using the wp_defer term counting function before starting to insert the products in the

database (for new products) and turning it on afterwards. After that's done, the 34,000+ all
details synchronization took six hours.

A problem was raised. The server sometimes ran out of memory when we were
processing 34000 products at once. Therefore, the XML was divided to smaller XMLs (100
products each). This solved the memory problem a little.

However, six hours was not an acceptable rate. We had to optimize the logic of
the synchronization itself. To identify the products, we had to use a unique identifier that
was common on the ERP system and the website. We used the ID of the ERP system and

saved it as a meta value in our database.

This ID was used to detect whether we already had the product in our database or not.
For a new product for the website, we inserted it and got the post ID to use it afterwards.

For an existing product, we got its post ID directly. This was typically executed using the

query:

fargs = arrayl
‘posts_per_page’ =+ 1,
‘post_type! => ‘product?,
‘post_status? =» array{ publish’, ‘trash?, ‘draft’, ‘pending?),
‘meta_guery? =» arrayi
array(
key? =» *_spin_id”,
fvalue* =» (string) trim(%p->SpinId),
13
)i

fposts = get_posts(fargs);

alefl hosted with W by GitHub view raw

This is a very heavy query to execute out of the box with no modifications to the

database itself. We had to index the meta_value column reduce time taken and. in addition,
all the insertions and updates were done in batches (before using any of the insertions and
updates we turned the AUTOCOMMIT off, and committed every 10,000 products, and
when done, turned the AUTOCOMMIT on again),

By doing so, the synchronization was halved to take only three hours — an acceptable
duration for us that we haven't optimized further since we need to keep the WordPress
and WooCommerce usage in our code.

The 34,000+ products synchronization case had to be handled for bulk changes made on
the ERP system for all of the products (even if rare). This scenario is run only once per day
so as to avoid overloading the server and because the products’ data (other than
quantities) are not changed frequently and can wait till the next day to be applied without
any problems to the eCommerce process.

Stock quantities

The one attribute that is being constantly updated is the stock quantity. The ERP system is
being used in all ALEF Bookstores branches and when an offline sale happens, the
stock changes in the ERP. This needed be reflected on the website to avoid overselling of

any of the products.

Unfortunately, we couldn’t get an exported XML from the ERP system with the
updated attributes only. We get all of the product’s details if the product had been updated
since last synchronisation. So, another synchronization scenario had to be created to

update the quantities.

First, we exported XMLs from the ERP system, and for each product, set its stock using
WooCommerce functions. This took approximately the same time (three hours) as the all

information synchronization described above and wasn't acceptable.

We had to further optimize the synchronization script. The ERP system was configured

to export the quantities of the products along with the unique identifier to a MySQL table in
the database. When done, a simple join MySQL query got the product IDs of the changed
quantities and the new quantities values. This join was saved as a view and contained the

website quantity, ERP quantity, and product ID.

A simple loop to initialize a WooCommerce product from the IDs and set the stock to the
new value completed the task but the time taken when this synchronization was run was
still a full hour. Better but still not acceptable because the intention was to run the

quantities update hourly.

The WooCommerce set stock function for a product made unnecessary checks (for
our case). the back-ordering and that the stock is being managed on the website.
Therefore, a copy of this function was created that omits these checks, and turmed off
the AUTOCOMMIT while updating. These last changes reduced the time required to
update the quantities for the 34,000+ products to under 2 minutes.

