

Case study
Electric utilities

Owen Electric Cooperative

Accelerating pole inspection workflows with Fulcrum

“ Right now it takes about 10 to 15 minutes to prep and import everything into Fulcrum. That’s about a 98% reduction in setup time. Once we get more efficient, I think we’ll have it down to under a minute. ”

Greg Humphries
Engineering Project Supervisor

Challenges

Surge in utility pole attachment requests overwhelmed disconnected and manual processes

Disconnected and inconsistent inspection methods slowed workflows and created inefficiencies

Field engineers struggled with toggling between apps, paper notes, and fragmented data entry, prolonging inspection times

Extended turnaround times increased the risk of missing federally mandated 30-45 day timelines

Engineers spent excessive time on clerical work such as data entry

Engineers disliked the previous cumbersome, fragmented inspection process

Key Outcomes

Fulcrum-enabled workflows support a **10-17x increase** in pole inspections, scaling to meet surging demand without adding staff

Unified, customizable Fulcrum apps standardized inspections, reducing setup time by **98%** — from 10–12 hours to just 10–15 minutes

Using Fulcrum's customized mobile apps and interactive maps, **per-pole inspection time dropped 75%**

Total inspection workflow now completes in **less than a week**, down from up to a month — a **65–80% reduction** in job cycle time

Streamlined digital workflows removed hours of back-office burden, allowing engineers to focus on inspections and increase productivity

Engineers embraced Fulcrum's simplified, consistent workflow and report a significantly improved work experience

“Before we were spending about three minutes per pole. With Fulcrum, it takes 30 to 45 seconds — a **time savings of at least 75% per pole.** **”**

Greg Humphries

Engineering Project Supervisor

Background

Owen Electric Cooperative serves nine counties in northern Kentucky, managing roughly 70,000 utility poles across a region that stretches from Georgetown, Kentucky to Cincinnati, Ohio. As a distribution utility, Owen Electric delivers electricity to residential, commercial, and industrial members, with infrastructure that spans densely populated neighborhoods, rural farmland, and everything in between.

Until a few years ago, Owen Electric's engineering team processed third-party attachment requests manually and with relative ease. These requests, typically from telecom or broadband providers seeking to install equipment on utility poles, averaged a few hundred annually.

But that changed dramatically with the arrival of federal broadband investment programs like the Rural Digital Opportunity Fund (RDOF) and the Broadband Equity, Access, and Deployment (BEAD) initiative. What had once been a manageable trickle became a flood almost overnight.

"Those broadband buildup efforts are what's driving the large-scale volume," said Greg Humphries, Engineering Project Supervisor at Owen Electric. "Before, it was like 300 poles a year. Now it's 3,000 to 5,000."

The tenfold-plus increase pushed Owen Electric's field engineering capacity to its limits. To manage that surge without adding staff, the utility needed to overhaul how it conducted field inspections and managed data. The existing process wasn't built for scale — and it showed.

The tipping point: when work outpaced capacity

As request volumes surged and federal deadlines tightened, Owen Electric's inspection process started to strain. The system had handled lower volumes, but it wasn't designed to scale.

Too many methods, not enough structure

Before adopting Fulcrum, Owen Electric's joint use inspections relied on a patchwork of disconnected methods. Each of the staff engineers approached inspections differently. Some carried paper maps and clipboards. Others logged data into Excel or used disconnected apps. The lack of consistency created confusion and duplication.

"We used a mix of approaches: paper forms, spreadsheets, whatever each engineer preferred," recalled Humphries. "It was clunky. Everyone had their own way, but there wasn't a consistent system."

“ For a 50-pole attachment request, we used to need two weeks to a month. Now we’re down to less than a week from start to finish. ”

Greg Humphries
Engineering Project Supervisor

Setting up an inspection used to involve multiple steps across several hands. First, the joint use coordinator exported pole and attachment data, along with a map showing the proposed route. That data was vetted and passed to Humphries, who assigned it to the appropriate engineer.

Before heading to the field, engineers often spent hours creating their own inspection packets — marking up maps, preparing spreadsheets, and organizing the information in whatever format they preferred.

“It took 10 to 12 hours just to get inspections set up,” said Humphries. “It usually stretched across a week, since different steps were handled in pieces over time. A lot of inefficiency built up in that process.”

Bottlenecks at every stage

Once in the field, engineers faced even more friction. Because there was no unified platform, they had to constantly toggle between apps, scroll through documents, or annotate paper notes on the fly. Simple tasks like marking completed poles or checking record details took extra effort. And if something went wrong like a forgotten login or a lost page of notes, the job might need to be restarted.

The follow-up was no better. After collecting data, engineers had to return to the office, transcribe field notes, generate estimates, and manually enter records. The entire process from initial setup to completed documentation could take up to a month for a single 50-pole request.

Taking that amount of time to process a survey posed a risk for meeting the timelines imposed by the Public Service Commission, which often required a full response within 30 to 45 days. “There was no way that we could meet these shot clocks,” said Humphries. “That was the kind of time it took just to get one request moving — never mind 50 poles.”

Why Fulcrum was the clear choice

Owen Electric had previously collaborated with one of its contract partners that had already adopted Fulcrum for inspection work. After seeing the platform in action, Humphries decided to bring Fulcrum in-house and build a dedicated app tailored to Owen’s joint use workflow.

“Our contract partner shared their template with us, which helped me accelerate the process of developing our own personal Owen Electric template,” Humphries explained. “It basically gave me a skeleton. I just had to add the skin.”

That level of customization proved essential. The partner’s version included more fields than Owen’s engineers needed, which slowed inspections down. By streamlining the form — removing unnecessary inputs, auto-populating known values, and using dropdowns to standardize the rest — Humphries made Fulcrum faster and easier to use in the field.

“We were spending about three minutes per pole before,” Humphries said. “Now it takes 30 to 45 seconds — a time savings of at least 75% per pole.”

Fulcrum's flexibility lets the team design a workflow aligned with their inspection needs. With fewer fields to manage and less switching between tools, engineers could complete each job in significantly less time.

A streamlined inspection workflow

Joint use inspections at Owen Electric are now conducted and recorded entirely in Fulcrum, with results exported for processing and reporting. Once a new request comes in, the joint use coordinator exports the relevant data, cleans it up, and imports it into a Fulcrum app automatically named after the job's tracking ID.

Setting everything up used to take 10 to 12 hours over several days. These days, it takes just minutes. "Right now it takes about 10 to 15 minutes to prep and import everything into Fulcrum," Humphries said. "That's about a 98% reduction in setup time. Once we get more efficient, I think we'll have it down to under a minute."

After the job is assigned, the engineer opens the inspection in the Fulcrum mobile app and sees an interactive map of all poles needing inspection. Each pole record includes photos, inspection fields, and status controls, all in one place.

Color-coded markers make it easy to see what's complete, in progress, or still pending, with updates reflected immediately. "They just stay in the Fulcrum app the whole time and can go straight to the poles they need to inspect," Humphries said.

With everything in one place, engineers no longer need to toggle between apps, reference printed maps, or retrace steps to figure out what's left. The workflow is clear, continuous, and easy to manage in the field. "They can mark the pole when they're done with it," said Humphries. "Then they can instantly open up where they were and see what's left to be done."

“ Fulcrum is simple enough for everyone to use. **”**

Greg Humphries
Engineering Project Supervisor

That level of structure has transformed the pace of fieldwork. Instead of spending days pulling together notes and photos, engineers now move through inspections efficiently and wrap jobs far faster than before. "Now it takes about half a day — four hours in the field — to get through it," Humphries said. "That same work used to take two weeks, so we've cut the timeline by more than 95%."

That shift didn't require new devices or extensive training. Even engineers who aren't especially comfortable with technology were able to pick up Fulcrum and put it to work right away. "Fulcrum made it simple enough for everyone to use," said Humphries.

The result is a consistent, repeatable process that works across the team — no matter who's in the field or what their starting point is with digital tools.

More throughput, less overhead

Fulcrum improved more than fieldwork. It gave the entire inspection process a structure the team can rely on. Engineers now handle more work in less time because everything they need is captured in a single, consistent format. Once they return from the field, they can use Fulcrum's web app to build estimates, review collected data, and generate job packages without retying a single entry.

Streamlining the inspection process also removed hours of back-office burden. Engineers are no longer acting as their own data entry staff. They're focused on the work they're trained to do — and they're doing more of it. "They used to handle all the clerical work themselves," Humphries said. "Now there's hardly any left, and that's how they like it."

The team's capacity to perform joint use inspections has grown significantly. Previously, only half the engineers at Owen Electric were actively doing the work. With Fulcrum, the entire team is trained, aligned, and contributing through the same streamlined workflow.

With the full team now engaged, Owen Electric can keep more work in-house, especially when it helps avoid passing extra costs on to members. "Before, we didn't have the ability to keep up," Humphries said. "It just took too long to get anything done. Now we can actually begin to handle the work."

Transforming inspections, improving outcomes

The improvements are undeniable. A job setup that once took a full day now takes minutes. Field inspections that used to span two weeks are completed in under four hours. The entire workflow from intake to final documentation typically wraps in less than a week.

"For a 50-pole request, we used to need two weeks to a month," said Humphries. "Now we're down to less than a week from start to finish."

That speed and efficiency have become essential as inspection volumes climb. But for Humphries, the real success is that engineers actually want to use the platform. After years of struggling with fragmented systems, they've finally got a workflow that works for them.

"They know what they had to do before, and they hated every aspect of it," he said. "I haven't heard a single complaint since we switched. It's the best thing that's happened in joint use."

A smarter way forward

Owen Electric's adoption of Fulcrum reshaped their entire inspection process from data collection in the field to final reporting. The utility significantly reduced setup time, accelerated field inspections, and streamlined documentation workflows. These efficiencies have empowered the full engineering team to take on more work internally while maintaining accuracy and consistency.

More importantly, the team now has a process they trust and actually want to use. After years of dealing with frustrating, disjointed tools, this is the first time joint use inspections have felt manageable and efficient.

With Fulcrum in place, Owen Electric is ready to handle today's workload and continue scaling as needed. As Humphries put it, "Fulcrum has been a game changer for us. It's made the process so much simpler that the team really feels the difference."

Ready to create your own digital transformation success story?

Contact us for a no-obligation chat to get started today!