
CASE STUDY

Moving to a
dedicated database
development model

2

Contents

The customer		
One of the fastest growing insurance providers in the UK	 3
The challenge			
Developers couldn't do significant development testing		 4
The solution	 	
Database development without conflict	 5
The results
Improved productivity after adopting SQL Clone	 6

Bennetts, a specialist motorbike insurance
broker in the UK, are using SQL Clone to

ease the pain of their developers who need
access to test data.

Moving to a dedicated database development model CASE STUDY

2

3

Moving to a dedicated database development model

The customer
Bennetts is a specialist motorbike insurance broker with
headquarters in Peterborough, and a contact center in Coventry,
UK. Established in 1930, the company is now part of the Saga
Group and is one of the fastest growing insurance providers in
the UK with over 230,000 policyholders.

The IT team is responsible for building the web applications that allow Bennetts
to provide competitive insurance quotes to over 350,000 riders a year, as well
as other line-of-business applications such as a biking news website and a call
center application.

The team use DevOps practices to develop, deploy, and continuously improve
these applications. As Ryan Hird, the team’s DevOps Engineer explains: “We
work in two weekly sprints, at which point we’re expected to deliver new or
improved functionality to our customers, with as little disruption as possible.”

To achieve this, they’ve created the build, test, and deployment mechanisms they
need to support their delivery goals. They develop the application and database
side by side, using a combination of Git and Team Foundation Server for version
control, and a mix of manually applied SQL scripts and Redgate products for
database change management. They have automated regression suites and
deploy all application changes and database changes using Octopus Deploy.

All of this works well, but there are still frustrations and delays, often caused
by disruptive changes made to a single, shared test database. Ryan describes
the problem: “You can logically group database objects into schemas, and
communicate constantly, to try to minimize conflict. But if many developers
need to make and test changes on the same database, then sooner or later one
of them will make a change that disrupts the work of others.”

“With 12 of the team working on the same
database, someone at some point will
make a change that disrupts others.”

CASE STUDY

4

Moving to a dedicated database development model

The challenge
The delays, often caused by disruptive changes, were holding
Bennetts back, and slowing development. Ryan wanted to
move from a shared development model to dedicated database
development, with each developer having their own copy of
the database.

While some developers had sandbox databases for local development, they
weren’t easy to refresh, and weren’t stocked with sufficient data to do any
significant development testing. The result was that most developers ended up
trying to work on the same test environment database. The team had wanted to
shift to using proper, dedicated development databases for a while.

“The blocker was cost and time,” Ryan says. “The only way to provision a
database for use in development or test was to do a backup and restore. It takes
an hour to set up a 15 GB database and I just didn’t have the time or storage
capacity to set up 15 or more database copies for development and testing each
time we started a sprint.”

The problems were mounting though, and it was restricting the team’s
productivity. Some new features required changes to multiple database objects.
In the shared database, there was a high chance that this would cause conflict
for developers working on other features. If a developer needed to test locally, he
or she had to juggle space locally to make room for a database restore, or spend
time ‘mocking out’ the parts of the database and the data that were needed.

“We have an issue at the minute where we end up with a long development
queue,” Ryan explains. “Once a feature has gone into test, we often have to block
development of other features to avoid conflicts and inconsistencies.”

“We have an issue at the minute
where we end up with a long

development queue.”

CASE STUDY

5

Moving to a dedicated database development model

“A big win for us is giving each
developer the freedom to work

on their own database.”

The solution
Some of the processes the team need to test will, by their very
nature, modify the data in the shared database. Cleaning up
the data in the database after each test run was a manual and
slow process. Given all this, Ryan was intrigued by SQL Clone’s
premise of a lightweight database provisioning mechanism,
based on standard Windows virtualization technology.

“We have good processes in place, but we’re restricted to working on a single
database, and this puts a cap on our productivity. If SQL Clone makes it possible
for each developer to work on their own database, then it could save us a lot of
time and help us deliver changes quicker.”

To investigate the potential of SQL Clone, Ryan subjected it to a thorough testing
regime. He found it was easy to create an image from a backup and use it as a
source for a clone database. He could develop against this without conflicting
with any other developers, or any other features in development.

Ryan liked the fact that SQL Clone had built-in PowerShell cmdlets for
automation.

“Since each clone requires minimal disk space on the local development
machine, and takes only a few seconds to create, we should be able to automate
database provisioning for every developer’s machine as a simple overnight job.”

CASE STUDY

Moving to a dedicated database development model

The results
Productivity is the big advantage Ryan sees in adopting SQL
Clone. It’s not just about saving time on current provisioning
processes, it’s about giving the team the ability to introduce
new practices and processes that will enable them to do
more. What if they wanted to compare different approaches to
developing the same feature, or the behavior of before-fix and
after-fix versions of a feature, for example?

“Think speed of change,” he says. “With SQL Clone, I could create a couple of
clones on my machine from the same image, run simultaneous tests against
each clone, and compare the results at a database level. All without worrying
about space or performance issues.”

Ryan is now looking forward to rolling out SQL Clone across the team. In
development, each developer will have their own copy of the database. In test,
there will be multiple environments with an identical copy of the database to test
different features, which will be quickly refreshed or deleted when each feature
is completed.

Web applications at Bennetts support a large and growing customer base. The
team need to quickly deliver software that the business can trust to function,
perform, and scale as they expect. For Ryan, dedicated developer databases and
the ability to test with realistic data are central to this goal. “We can get around
space issues by buying more disk capacity, but that doesn’t solve the problem
that database backup and restore is, fundamentally, a ‘heavyweight’ provisioning
mechanism. Our hope is that SQL Clone can provide a quicker, lighter approach,
better suited to our development and testing requirements.”

Try SQL Clone for free at www.redgate.com/SQLClone

CASE STUDY

6

