
CASE STUDY

Rapid database
provisioning

2

Paymentsense, the UK's largest merchant service provider
and one of Europe's fastest growing Fintech firms, cut
provisioning time by 85% and transformed the way teams
work, with SQL Clone.

Contents

The customer		
The UK’s largest merchant services provider	 3
The challenge			
Provisioning of databases was brittle and time-consuming		 4
The solution	 	
A test installation of SQL Clone through to full adoption	 5
The results
Cut the time for database provisioning by more than 85%		 6

3

Rapid database provisioning

The customer
Paymentsense is the UK’s largest merchant services provider.
Its contactless card machines and online payment services
provide 50,000 SMEs with a simple, low cost way to process
over £5 billion in card payments every year, in store, online,
over the phone, and on the move.

Behind the scenes, a team of 20 application and database developers in the
UK, and four others who work remotely, look after all of their financial services
applications, with over 80 databases in the development environments, and
15 in production.

To speed up development, the team has adopted a DevOps approach and has a
unified development, testing, and deployment process for both applications and
databases. Using a combination of TeamCity, JIRA, and Octopus Deploy, they
continuously test and deploy updates throughout the day.

While highly efficient, the approach also exposed an obstacle to further progress
to Ahmed Althamari, the Senior SQL Server DBA. Paymentsense had a process
in place for provisioning databases to development and test environments, but it
was proving brittle and time-consuming, and caused a lot of space issues.

As well as waiting for database copies to be created, he often had to move files
around on the target server to free space up, and sometimes had to create the
database copies on a different disk entirely. There had to be a better way.

“Disk space problems were disrupting
work when developers wanted a fresh

database copy.”

CASE STUDY

4

Rapid database provisioning

The challenge
Even before Paymentsense adopted SQL Clone, the IT team
had an efficient database development process. Every
developer could develop and test against a copy of the
database in their own sandbox, and in the test environment
there were often 15 or more copies of the same database
being used.

This allowed different branches to be developed at the same time and
encouraged and fostered a continuous deployment process, where changes
were made in development, tested, and then sent to pre-production before finally
being deployed.

The main issues were with the database provisioning process – specifically,
the need to keep all development servers, and the 15 databases in the test
environment, constantly updated. The time involved in performing the database
restore operations and the disk space required were a constant concern for
everyone involved.

For the largest databases in the test environment, averaging 200–300GB, in
size, Ahmed resorted to copying over the schema only, and then importing a
small amount of sample data for testing.

This put a constraint in the testing process because, while the schema was
accurate, the data was a representation rather than a true copy. Occasionally,
this meant newly-deployed code would throw up unexpected results in
production, which they couldn't reproduce on the sample data in the
test environment.

“The developers couldn’t rely on test
results to reflect accurately the behavior

in production.”

CASE STUDY

5

Rapid database provisioning

“We’ve cut the time for database
provisioning by more than 85%,
which is a really quick win for us.”

The solution
While provisioning some databases using schemas and sample data made the
process smoother and less time-consuming, Ahmed was not happy with it as a
long-term solution.

“When you test these databases, you can’t see the true impact that changes
will have on performance, because you’re not running them against what
could be millions of rows of data.”

Ahmed was already familiar with Redgate. Every developer used SQL Prompt to
write, refactor, and share SQL code, and their backup software of choice was
SQL Backup Pro. He was intrigued, therefore, by SQL Clone, and the prospect
that it could provide full copies of databases for developers, yet also save time
and disk space in the provisioning process. He read more about SQL Clone and
spent a lot of time talking to his line manager and head of department.

“SQL Clone appeared to be just what I was looking for, but introducing it
meant making a change to our development processes – and that's a risk. It
means you’re going to break it. The first few days, there are always bugs and
issues, but the organization won't accept instability in these processes in the
longer term.”

He worked closely with Redgate to implement a test installation of SQL Clone
and, once it had been fully tested in a true representation of the development
lifecycle, it was adopted.

CASE STUDY

Rapid database provisioning

The results
The development process at Paymentsense has remained broadly the same as it
was before SQL Clone.

“The issue wasn’t the way we were working, it was the systems we were
working with. Database provisioning was slow, and using sample datasets
meant we couldn’t test what effect changes had on performance.”

Introducing SQL Clone has made a big difference. Using its PowerShell interface,
an automated process is now in place that runs a backup of the databases
during the night, uses SQL Clone to create a data image from that backup, and
then stores it on a shared disk. A second process then creates multiple clones
from that data image so that they are available the next day, and removes any
unused clones and images.

When developers create a new branch and want to test it against the database,
the continuous deployment process creates a new clone on demand, so they
always have an up-to-date copy to work from. Importantly, with SQL Clone the
provisioning takes just seconds to happen. As Ahmed says:

"We want to encourage developers to think of a database clone as a
lightweight resource they spin up, integrate into their development process,
and then tear down again".

At the moment, they perform data masking as a separate step, by running
scripts against each clone. Their next task is to incorporate this step into their
automated overnight job. While saving hours of effort, the process has also
removed the disk space problem, with each clone taking up only around 40MB,
whatever the size of the original database. More importantly, development work
is now far more accurate because the clones access a realistic copy of the data
in production.

Try SQL Clone for free at www.redgate.com/SQLClone

CASE STUDY

