
Reliable Crypto Transactions at Coinbase 1

Reliable Crypto Transactions at 
Coinbase
This case study is based on an interview with Anthony Dmitriyev who was a key 
player in Temporal* adoption within Coinbase

Coinbase has redefined the way that people manage, spend and think about 
cryptocurrency. Changing the way people think about their money is a hard 
problem. Expectations are at an all time high whenever a business is responsible 
for a users hard earned $$$, so finding a model which allows you to innovate 
without additional risk is critical. This is the exact problem Coinbase was facing 
when they began re-architecting the system which runs the majority of their 
transactions.

Problem:

Coinbase processes millions of cryptocurrency transactions every day. From their 
users' point of view, each transaction is reduced to a binary result of "succeeded" 
or "failed". Under the hood each of these transactions consists of a series of 
steps. A simplified example of transaction steps might be:

 Withdraw foocoin from user A's wallet

 Withdraw barcoin from user B's wallet

 Deposit foocoin into user B's wallet

 Deposit barcoin into user A's wallet

If all of these steps succeed, the user-level transaction succeeds. On the other 
hand, if a step fails the user-level transaction cannot fail until the steps which 
were already executed are rolled back. This need to rollback is traditionally 
accomplished using SAGA - a common pattern for handling rollbacks in 
distributed transactions. 

https://microservices.io/patterns/data/saga.html


Reliable Crypto Transactions at Coinbase 2

Until recently Coinbase relied on a custom engine to handle these SAGA needs. 
The homegrown system was quite reliable and well-suited enough for SAGA 
support, but when teams began trying to extend the system to other domains 
things became painful. Each new use case the system needed to support 
translated into a large amount of plumbing and developer work. Coinbase quickly 
realized that they were going to need a flexible, general-purpose solution if they 
wanted to continue scaling and innovating.

Searching for Answers:

A search began for a replacement to their homegrown system. The most 
important feature was the ability to support the existing SAGA patterns which 
constitute the bread and butter of Coinbase's business. The contenders were 
quickly narrowed down to 3 finalists:

Zeebe

AWS Step Functions

Temporal

SAGA workflows were built on each of the contending platforms. In the process, 
the team realized that both the Zeebe and AWS Step Functions development 
models forced users to predefine all of their possible execution paths upfront. 
This is a real problem in the context of SAGAS, since compensation logic is 
required for each step which can potentially fail. With Zeebe and Step Functions 
this meant that each step required one or more prebuilt DAGs to handle the 
potential failures. If your SAGAS consist of a few simple steps, prebuilding DAGs 
might be feasible, but as complexity increases the overhead becomes enormous. 

Trying to model complex SAGAs using a plain execution graph 
such as Zeebe and AWS Step Functions provide will make 
things unnecessarily more complex, plus we want a solution 
which we could explore for more use cases that don't 
necessarily use SAGAS. So I think this is where Temporal really 
shined.

http://platforms.in/


Reliable Crypto Transactions at Coinbase 3

Fortunately Temporal did not come with these drawbacks. Instead of requiring 
the user to define each possible path upfront using unfriendly DAGs, Temporal 
enables users to handle failures programmatically. Not only did this make things 
more manageable, it became possible to share and reuse logic that would have 
otherwise been isolated.

Temporal allows us to do SAGAS easily, but is also deep and 
very extendable. 

A slow transformation

When running sensitive workloads at Coinbase scale, it's generally not a great 
idea to migrate your entire system at once. So once the decision was made to 
move forward with Temporal, a migration strategy was needed that would enable 
Coinbase to incrementally shift their critical transaction workload. The team 
began iteratively replacing each existing component with a Temporal workflow. 
They relied on Coinbase's open source deployment system Odin to build 
containers for each of the translated workflows and make them available via 
blue/green deployments. Each new workflow was put behind a feature flag until it 
had been running long enough for the team to feel confident putting it center 
stage. Before long, the majority of existing workflows had been successfully 
migrated to Temporal.

For every specific use case we migrated we used a very 
incremental process. We would take a single use case and 
translate it to be a Temporal workflow. Then we would put it 
behind feature flag and do a progressive rollout.

Retrospect:

The migration to Temporal has been a huge win for Coinbase. Temporal maintains 
the high level of reliability offered by the homegrown system while also providing 
visibility into running processes. 

Temporal brings visibility into what is happening which was not 
something we had with our previous system.



Reliable Crypto Transactions at Coinbase 4

Development velocity has also increased as developers can focus exclusively on 
writing code instead of maintaining a homegrown SAGA solution. Temporal has 
opened up use cases which weren't even imaginable with the homegrown system. 

Temporal opened up a lot of possibilities of what we could do 
with the system.

Things that seemed complex before don't really seem that way anymore.

Things that we thought to be much more complex to 
implement on top of the old system feel like they are much 
easier with Temporal.

Afterthoughts:

Teams across Coinbase are excited about Temporal. More and more new features 
across the business are being prototyped and built with Temporal. 

Temporal has quite a strong "addictiveness" factor to it, once 
you start using it and figure out the value proposition you 
immediately see more and more potential use-cases that you 
can use it for. And getting away from it is a non-trivial effort, as 
it does make an engineer's life quite a bit easier.

Even though there were reservations about workflows as code initially, Coinbase 
now sees this as a revolutionary aspect of the Temporal offering. That's because 
keeping things in code enables developers to make business better.

I like that you use code to define your workflows. This is 
definitely a game changer.


